
FPGA Based System Design

Lab #6: Synthesis of Verilog code with Leonardo Spectrum

Objectives:

 To synthesize Verilog code using Leonardo Spectrum from Mentor Graphics.

1. Introduction

Verilog HDL is a high level description language for system and circuit design. The language

supports various levels of abstraction. Where a regular netlist format supports only structural

description, Verilog supports a wide range of description styles. This includes structural

descriptions, data flow descriptions and behavioral descriptions.

The structural and data flow descriptions show a concurrent behavior. All statements are

executed concurrently, and the order of the statements does not matter. On the other hand,

behavioral descriptions are executed sequentially in always blocks, tasks and functions in

Verilog. The behavioral descriptions resemble high-level programming languages.

Verilog allows a mixture of various levels of design entry. LeonardoSpectrum synthesizes all

levels of abstraction, and minimizes the amount of logic needed, resulting in a final netlist

description in the technology of your choice.

2. Synthesis (Leonardo Spectrum)

1. The Verilog code used for this lab is as follows:

module mux_21 (a,b,sel,y);

 input a, b;

 output y;

 input sel;

 wire y;

 assign y = (sel) ? b : a;

endmodule

2. Open Leonardo Spectrum. (Start>All Programs>Leonardo Spectrum
LS2009a_6> Leonardo Spectrum LS2000a_6)

3. Choose Level 3.

4. Click on the 'Toggle Advanced FlowTabs' icon in the toolbar near the top of the

window to enter the Advanced mode.

5. Type the command “set exclude_gates {PadOut PadInC}” in the command
window in the bottom right panel. This command excludes the gates PadInC and

PadOut from being imported when we load the library in the next step.
6. The Technology tab should be selected. Choose TSMC 0.35u (typ) (or AMI

0.5u) library and load it.

7. Click the Input tab. Set the working directory to the directory with the Verilog
file, and then click on Open Files button to open the mux2_1.v file. Load the file
by clicking the Read button.

8. Move on to the Optimize tab, and click optimize.
9. Go to the Output tab, specify the name of the output file as ‘syn_mux2_1.v’, and

choose the output format as Verilog. Check Down-to selection as Primitives. Click

Write to export a synthesized Verilog netlist to your working directory. You are
done with synthesis.

10. The synthesized verilog netlist will read:

//

// Verilog description for cell mux_21,

// 02/14/12 10:51:43

//

// LeonardoSpectrum Level 3, 2009a.6

//

module mux_21 (a, b, sel, y) ;

 input a ;

 input b ;

 input sel ;

 output y ;

 mux21_ni ix7 (.Y (y), .A0 (a), .A1 (b), .S0 (sel)) ;

endmodule

module mux21_ni (Y, A0, A1, S0) ;

 output Y ;

 input A0 ;

 input A1 ;

 input S0 ;

 wire NOT_S0, nx2, nx4;

 assign NOT_S0 = ~S0 ;

 and (nx2, A0, NOT_S0) ;

 and (nx4, A1, S0) ;

 or (Y, nx2, nx4) ;

endmodule

3. What to hand-in

Submit The synthesized verilog netlist for the following codes.

1. Following is the Verilog code for a combinational logic.

module comb1(a,b,c);

 input a,b;

 output c;

 reg c;

 always @ (a or b)

 begin

 if ((a==1) && (b==1))

 c = 1'b1;

 else

 c = 1'b0;

 end

 endmodule

2. Following is the Verilog code for 1-bit adder

 module adder(a, b, ci, sum,carry);
 input a;

 input b;

 input ci;

 output sum,carry;

 assign {sum,carry} = a + b + ci;

endmodule

3. Following is the Verilog code for an unsigned 4-bit greater or equal comparator.

 module compar(a, b, cmp);

 input [4:0] a;

 input [4:0] b;

 output cmp;

 assign cmp = (a >= b) ? 1'b1 : 1'b0;

endmodule

4. Following is the Verilog code for a logical shifter.

module lshift (di, sel, so);

 input [2:0] di;

 input [1:0] sel;

 output [2:0] so;

 reg [2:0] so;

 always @(di or sel)

 begin

 case (sel)

 2'b00 : so = di;

 2'b01 : so = di << 1;

 2'b10 : so = di << 2;

 default : so = di << 3;

 endcase

 end

endmodule

5. Following is the Verilog code for an unsigned comparator

module synthesis_compare_xz (a,b);

 output a;

 input b;

 reg a;

 always @ (b)

 begin

 if ((b == 1'bz) || (b == 1'bx)) begin

 a = 1;

 end else begin

 a = 0;

 end

 end

 endmodule

6. Following is the Verilog code for combinational logic

module comb2(a,b,g,q);

 input a,b,g;

 output q;

 reg q;

 always@(g, a, b)

 begin

 if (g == 1'b1)

 q = 0;

 else if (a == 1'b1)

 q = b;

 end

endmodule

7. Write a code using for loop and synthesize it.

